Effective Training Data Improved Ensemble Approaches for Urinalysis Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Selection of Translation Model Training Data

Data selection has been demonstrated to be an effective approach to addressing the lack of high-quality bitext for statistical machine translation in the domain of interest. Most current data selection methods solely use language models trained on a small scale in-domain data to select domain-relevant sentence pairs from general-domain parallel corpus. By contrast, we argue that the relevance b...

متن کامل

Effective Actions for Ensemble Data Assimilation

Ensemble data assimilation is a problem in determining the most likely phase space trajectory of a model of an observed dynamical system as it receives inputs from measurements passing information to the model. Using methods developed in statistical physics, we present effective actions and equations of motion for the mean orbits associated with the temporal development of a dynamical model whe...

متن کامل

Multi-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including s...

متن کامل

Effective Approaches for Watermarking XML Data

Watermarking enables provable rights over content, which has been successfully applied in multimedia applications. However, it is not trivial to apply the known effective watermarking schemes to XML data, since noisy data may not be acceptable due to its structures and node extents. In this paper, we present two different watermarking schemes on XML data: the selective approach and the compress...

متن کامل

Bootstrapping and Multiple Imputation Ensemble Approaches for Missing Data

Correspondence *Corresponding author Email: [email protected] Presence of missing values in a dataset can adversely affect the performance of a classifier; it deteriorates rapidly as missingness increases. Single and Multiple Imputation (MI) are normally performed to fill in the missing values. In this paper, we present several variants of combining MI and bootstrapping to create ensembl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Education and Computer Science

سال: 2011

ISSN: 2075-0161,2075-017X

DOI: 10.5815/ijmecs.2011.04.04